Development of an intelligent expert system with deep learning for early risk detection of monkeypox
Keywords:
Monkeypox, Expert System, Deep Learning, CNN, AndroidAbstract
This study aims to develop an intelligent expert system based on deep learning to detect the risk of Monkeypox disease early. Monkeypox is a zoonotic disease that can spread to humans, with symptoms similar to smallpox but milder. Early detection is essential to prevent spread and speed up handling. In this system, deep learning models are used to analyze data on clinical symptoms and patient risk factors, including travel history, interactions with animals, and physical symptoms that appear. The expert system provides a prediction of the level of risk and recommendations for medical treatment based on the results of the analysis. The system was tested using a dataset of 770 images divided into four classes (Chickenpox, Measles, Monkeypox, and Normal), with 70% for training, 20% for testing, and 10% for validation. The evaluation results showed an accuracy of 96% in detecting Monkeypox risk, making it an effective tool for medical personnel in diagnosing and providing early treatment. The implementation of this expert system is expected to contribute to preventing the spread of Monkeypox disease more efficiently and in a timely manner.
References
1. Ahsan MM, Ali MS, Hassan MM, Abdullah TA, Gupta KD, Bagci U, et al. Monkeypox Diagnosis with Interpretable Deep Learning. IEEE Access. 2023;11(August):81965–80.
2. Yasmin F, Hassan MM, Hasan M, Zaman S, Kaushal C, El-Shafai W, et al. PoxNet22: A Fine-Tuned Model for the Classification of Monkeypox Disease Using Transfer Learning. IEEE Access. 2023;11(March):24053–76.
3. Raha AD, Gain M, Debnath R, Adhikary A, Qiao Y, Hassan MM, et al. Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism. IEEE Access. 2024;12(March):51942–65.
4. Olusegun R, Oladunni T, Audu H, Houkpati YAO, Bengesi S. Text Mining and Emotion Classification on Monkeypox Twitter Dataset: A Deep Learning-Natural Language Processing (NLP) Approach. IEEE Access. 2023;11(March):49882–94.
5. Kundu D, Rahman MM, Rahman A, Das D, Siddiqi UR, Alam MGR, et al. Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset. IEEE Access. 2024;12(March):32819–29.
6. Organization WH. Mpox Outbreak Toolbox (who.int). 2024 [cited 2024 Aug 28]. p. 1 There are two distinct clades of the virus: clade I (with subclades Ia and Ib) and clade II (with subclades IIa and IIb). In 2022–2023 a global outbreak of mpox was caused by the clade IIb strain. Available from: https://www.who.int/news-room/fact-sheets/detail/mpox
7. Smith A. BBC. 2022. p. 1 WHO declares mpox global health emergency. Available from: https://www.bbc.com/news/articles/cvg35w27gzno
8. Cynthia S. Goldsmith RR. United Nations News. 2024 [cited 2024 Aug 14]. p. 1 WHO declares mpox virus a public health emergency of international concern. Available from: https://news.un.org/en/story/2024/08/1153176
9. Bengesi S, Oladunni T, Olusegun R, Audu H. A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets. IEEE Access. 2023;11(February):11811–26.
10. WIRES N. France 24. 2024 [cited 2024 Aug 14]. p. 1 WHO declares monkeypox a global public health emergency. Available from: https://www.france24.com/en/africa/20240814-who-declares-monkeypox-a-global-public-health-emergency
11. M R. CNBC Indonesia. 2024 [cited 2024 Aug 24]. p. 1 Lengkap! Semua Tentang Mpox, Indonesia Wajib Waspada. Available from: https://www.cnbcindonesia.com/research/20240824140157-128-566083/lengkap-semua-tentang-mpox-indonesia-wajib-waspada
12. RI UPKK. Kementerian Kesehatan RI. 2022. p. 1 Kasus Monkeypox Mulai Terdeteksi di Indonesia. Available from: https://upk.kemkes.go.id/new/kasus-monkeypox-mulai-terdeteksi-di-indonesia
13. Kesehatan D. Dinkes Semarang. 2024 [cited 2024 Aug 22]. p. 1 Waspada Mpox, 88 Kasus Terdeteksi di Indonesia. Available from: https://dinkes.semarangkota.go.id/content/post/407
14. Putu Indah Savitri, Didik Kusbiantoro EIS. Komunikasi dan Media KEMENSETNEG RI. 2024 [cited 2024 Aug 30]. p. 1 Jelang HLF MSP dan IAF 2024 di Bali, DPR RI Fokus Pencegahan Wabah Monkeypox. Available from: https://www.setneg.go.id/baca/index/jelang_hlf_msp_dan_iaf_2024_di_bali_dpr_ri_fokus_pencegahan_wabah_monkeypox
15. Alhamdani AA. Application of Deep Learning using Convolutional Neural Network (CNN) Algorithm for Gesture Recognition. Journal of Software Engineering, Information and Communication Technology (SEICT). 2022 Feb 24;4(1):61–8.
16. Kuncoro DF, Ardianto R. Analisis Sel Darah Putih dengan Pendekatan Bioinformatika menggunakan Arsitektur. 2024;5(1):31–7.
17. Ardianto R, Kartika Wibisono S. Analisis Deep Learning Metode Convolutional Neural Network Dalam Klasifikasi Varietas Gandum. Jurnal Kolaboratif Sains. 2023;6(12).
18. Putri A, Ardianto R. Technologies and Securities Issues Kemajuan dalam Sistem Layanan Kesehatan yang mendukung IoT : Tinjauan Sistematis terhadap Masalah Teknologi dan Isu Keamanan. 2024;1(2):89–101.
19. Farahat FA, ElSayed MA. Achievement Stability Set for Parametric Rough Linear Goal Programing Problem. Fuzzy Information and Engineering. 2019;11(3):279–94.
20. Chen H, Wang J, Zhu J, Xiong X, Wang W, Yang H. A Two-stage Stochastic Mixed-integer Programming Model for Resilience Enhancement of Active Distribution Networks. Journal of Modern Power Systems and Clean Energy. 2023;11(1):94–106.
21. Hussain T, Siniscalchi SM, Wang HLS, Tsao Y, Salerno VM, Liao WH. Ensemble hierarchical extreme learning machine for speech dereverberation. IEEE Transactions on Cognitive and Developmental Systems. 2020;12(4):744–58.
22. Istiqomah H, Ardianto R. Prediksi Kanker Darah Menggunakan Metode Convolutional Neural Network. 2024;4(1):51–60.
23. François Chollet. Deep Learning with Python. 2017. 1–384 p.
24. Nurhalizah RS, Ardianto R. Analisis Supervised dan Unsupervised Learning pada Machine Learning : Systematic Literature Review. 2024;4(1):61–72.
25. Rifa A, Sujiwanto I, Ronggo Bintang Pratomo Prawirodirjo R, Palupingsih P. Analisis Perbandingan Performa Model Klasifikasi Kesehatan Daun Tomat menggunakan Arsitektur VGG, MobileNet, dan Inception V3 Analysis Tomato Leaf Health Classification Model Performance Comparison Using VGG, MobileNet, and Inception V3. Jurnal Ilmu Komputer Agri-Informatika. 2023;10(1).
26. Zhang X. Improved Three-Dimensional Inception Networks for Hyperspectral Remote Sensing Image Classification. IEEE Access. 2023;11(March):32648–58.
27. Salami A, Andreu-Perez J, Gillmeister H. EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification. IEEE Access. 2022;10:36672–85.
28. Karthick Raghunath KM, Vinoth Kumar V, Venkatesan M, Singh KK, Mahesh TR, Singh A. XGBoost Regression Classifier (XRC) Model for Cyber Attack Detection and Classification Using Inception V4. Journal of Web Engineering. 2022;21(4):1295–322.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Berliana Rahmadhani, Adam Fathurrohman Arya Bakhti, Rian Ardianto, Anggit Wirasto, Khoirun Nisa (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.