Comparison of machine learning algorithms for alzheimer's risk classification
Keywords:
Alzheimer's disease, Machine learning algorithms, XGBoost, Disease classification, Health data analysisAbstract
Alzheimer's disease is a progressive form of dementia that affects cognitive function and impacts the quality of life of sufferers. Advancements in artificial intelligence, particularly in machine learning, are creating new possibilities for streamlining the disease classification process using health history data. This study aims to compare the performance of five machine learning algorithms, namely Naive Bayes, Random Forest, Artificial Neural Network (ANN), XGBoost and Support Vector Machine (SVM), in predicting Alzheimer's diagnosis using 2,149 data from Kaggle Open Datasets. The data went through the process of Data Collection, preprocessing, testing using the five algorithms. The evaluation results show that XGBoost has the highest accuracy of 95%, followed by Random Forest with 93% accuracy, ANN 84%, SVM 83%, and Naive Bayes 83%. In conclusion, XGBoost proved to be the most effective model in detecting Alzheimer's, ahead of the other algorithms in this study.
References
1. Shah S, Shah M. The effects of machine learning algorithms in magnetic resonance imaging (MRI), and biomarkers on early detection of Alzheimer’s disease. Adv Biomark Sci Technol [Internet]. 2024;6:191–208. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2543106424000152
2. Zhang S, Yuan J, Sun Y, Wu F, Liu Z, Zhai F, et al. Machine learning on longitudinal multi-modal data enables the understanding and prognosis of Alzheimer’s disease progression. iScience. 2024 Jul 19;27(7).
3. Sharma A, Kaur S, Memon N, Jainul Fathima A, Ray S, Bhatt MW. Alzheimer’s patients detection using support vector machine (SVM) with quantitative analysis. Neuroscience Informatics. 2021 Nov;1(3):100012.
4. Sánchez-Reyna AG, Celaya-Padilla JM, Galván-Tejada CE, Luna-García H, Gamboa-Rosales H, Ramirez-Morales A, et al. Multimodal early alzheimer’s detection, a genetic algorithm approach with support vector machines. Healthcare (Switzerland). 2021 Aug 1;9(8).
5. Bestari AP. KEMENKES. 2023 [cited 2024 Sep 19]. Mengenal Demensia Alzheimer. Available from: https://yankes.kemkes.go.id/view_artikel/2819/mengenal-demensia-alzheimer
6. Taie SA, Ghonaim W. A new model for early diagnosis of alzheimer’s disease based on bat-svm classifier. Bulletin of Electrical Engineering and Informatics. 2021;10(2):759–66.
7. Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, et al. Machine learning techniques for the diagnosis of alzheimer’s disease: A review. ACM Transactions on Multimedia Computing, Communications and Applications. 2020 Apr 1;16(1s).
8. Purwono P, Wirasto A, Setiawan RA, Triwibowo DN, Zuhrufillah I, Sumantri RBB, et al. Analysis of the relationship between fetal health prediction features with machine learning feyn qlattice regression model. In: 3rd Borobudur International Symposium On Science And Technology 2021 [Internet]. AIP Conference Proceedings; 2023 [cited 2024 Nov 14]. p. 020183. Available from: https://pubs.aip.org/aip/acp/article-abstract/2706/1/020183/2889424/Analysis-of-the-relationship-between-fetal-health?redirectedFrom=fulltext
9. Khan A, Zubair S. Development of a three tiered cognitive hybrid machine learning algorithm for effective diagnosis of Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences. 2022 Nov 1;34(10):8000–18.
10. Firman Akbar, Rahmaddeni. Komparasi Algoritma Machine Learning Untuk Memprediksi Penyakit Alzheimer. Jurnal Komputer Terapan. 2022 Nov 30;8(2):236–45.
11. Gill LS, Kaur J, Goel N. Machine learning and texture features based approach for classifying Alzheimer’s disease. In: Procedia Computer Science. Elsevier B.V.; 2024. p. 2741–8.
12. Chakraborty M, Naoal N, Momen S, Mohammed N. Analyze-Ad: A comparative analysis of novel AI approaches for early Alzheimer’s detection. Array. 2024 Jul 1;22.
13. Huang YH, Chen YC, Ho WM, Lee RG, Chung RH, Liu YL, et al. Classifying Alzheimer’s disease and normal subjects using machine learning techniques and genetic-environmental features. Journal of the Formosan Medical Association. 2024 Jun 1;123(6):701–9.
14. Fan C, Chen M, Wang X, Wang J, Huang B. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Vol. 9, Frontiers in Energy Research. Frontiers Media S.A.; 2021.
15. Maharana K, Mondal S, Nemade B. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings. 2022 Jun;3(1):91–9.
16. Joseph VR. Optimal ratio for data splitting. Stat Anal Data Min. 2022 Aug 1;15(4):531–8.
17. Afzal S, Maqsood M, Khan U, Mehmood I, Nawaz H, Aadil F, et al. Alzheimer disease detection techniques and methods: A review. Vol. 6, International Journal of Interactive Multimedia and Artificial Intelligence. Universidad Internacional de la Rioja; 2021. p. 26–38.
18. Vichianin Y, Khummongkol A, Chiewvit P, Raksthaput A, Chaichanettee S, Aoonkaew N, et al. Accuracy of Support-Vector Machines for Diagnosis of Alzheimer’s Disease, Using Volume of Brain Obtained by Structural MRI at Siriraj Hospital. Front Neurol. 2021 May 10;12.
19. Farhadian M, Shokouhi P, Torkzaban P. A decision support system based on support vector machine for diagnosis of periodontal disease. BMC Res Notes. 2020 Jul 13;13(1).
20. Mohamed ES, Naqishbandi TA, Bukhari SAC, Rauf I, Sawrikar V, Hussain A. A hybrid mental health prediction model using Support Vector Machine, Multilayer Perceptron, and Random Forest algorithms. Healthcare Analytics. 2023 Nov 1;3.
21. Franciotti R, Nardini D, Russo M, Onofrj M, Sensi SL. Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild Cognitive Impairment. Neuroscience. 2023 Mar 15;514:143–52.
22. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine Learning Methods in Drug Discovery. Molecules. 2020 Nov 2;25(22).
23. Mahesh B. Machine Learning Algorithms-A Review. International Journal of Science and Research [Internet]. 2018; Available from: www.ijsr.net
24. Wildah SK, Agustiani S, S MRR, Gata W, Nawawi HM. Deteksi Penyakit Alzheimer menggunakan Algoritma Naïve Bayes dan Correlation Based Feature Selection. Jurnal Informatika. 2020 Sep 7;7(2):166–73.
25. Abdolrasol MGM, Suhail Hussain SM, Ustun TS, Sarker MR, Hannan MA, Mohamed R, et al. Artificial neural networks based optimization techniques: A review. Vol. 10, Electronics (Switzerland). MDPI; 2021.
26. Niazkar HR, Niazkar M. Application of artificial neural networks to predict the COVID-19 outbreak. Glob Health Res Policy. 2020 Dec 1;5(1).
27. Ibrahem Ahmed Osman A, Najah Ahmed A, Chow MF, Feng Huang Y, El-Shafie A. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal. 2021 Jun 1;12(2):1545–56.
28. Zhang P, Jia Y, Shang Y. Research and application of XGBoost in imbalanced data. Int J Distrib Sens Netw. 2022 Jun 1;18(6).
29. Liew XY, Hameed N, Clos J. An investigation of XGBoost-based algorithm for breast cancer classification. Machine Learning with Applications. 2021 Dec;6:100154.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ria Suci Nurhalizah, Retno Agus Setiawan, Rian Ardianto (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.