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Abstract.	 Gestational	 diabetes	 mellitus	 (GDM)	 is	 a	 complication	 of	
pregnancy	 characterized	 by	 impaired	 glucose	 tolerance	 arising	 or	
initially	identified	during	pregnancy.	This	condition	requires	machine	
learning-based	classification	methods	 that	 can	 identify	 risks	early,	 as	
conventional	 methods	 such	 as	 screening	 often	 cause	 delays	 in	 risk	
identification	 and	 lack	 accuracy	 due	 to	 variations	 in	maternal	 health	
conditions.	Machine	learning	offers	a	solution	by	providing	faster	and	
more	accurate	classification	of	GDM,	due	to	its	ability	to	quickly	process	
large	 data	 and	 analyze	 data	 involving	 many	 variables.	 This	 study	
explores	 the	use	of	Random	Forest,	K-Nearest	Neighbors	 (KNN),	 and	
Naive	 Bayes	 algorithms	 for	 GDM	 risk	 classification	 to	 determine	 the	
most	effective	model.	Using	a	dataset	containing	1012	samples	from	the	
Kurdistan	 region,	 the	 researchers	 performed	 data	 pre-processing,	
including	 data	 cleaning,	 data	 balancing	 using	 SMOTE,	 and	
normalization,	 followed	 by	 model	 training	 and	 evaluation	 based	 on	
accuracy,	AUC,	sensitivity,	and	specificity	metrics.	The	results	showed	
that	Random	Forest	achieved	the	highest	accuracy	of	86.43%,	AUC	of	
93.78%,	sensitivity	of	89.29%,	and	specificity	of	83.57.	Following	that,	
KNN	had	an	accuracy	of	83.93%,	AUC	of	83.93%,	sensitivity	of	88.57%,	
and	specificity	of	79.29%.	Lastly,	Naive	Bayes	reached	an	accuracy	of	
76.79%.	Based	on	these	results,	Random	Forest	is	the	best	performing	
algorithm	for	effective	GDM	risk	classification.	This	study	emphasizes	
the	potential	of	machine	learning	to	enhance	the	speed	and	accuracy	of	
early	 GDM	 risk	 prediction,	 ultimately	 contributing	 to	 better	 health	
outcomes	for	both	mothers	and	their	children.	

1 Introduction 

Gestational	 diabetes	 mellitus	 (GDM)	 is	 a	 prevalent	 pregnancy	 complication	
characterized	by	impaired	glucose	tolerance	that	arises	or	is	initially	identified	during	
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pregnancy	(1).	The	global	prevalence	of	GDM	ranges	from	5%	to	25.5%	(2).	Southeast	
Asia,	the	prevalence	of	GDM	reaches	23.7%	and	is	one	of	the	highest	rates	(3).	While	the	
prevalence	of	GDM	in	Indonesia	reached	3.6%	(4).	Maternal	conditions	such	as	diabetes	
or	other	diseases,	including	GDM,	can	lead	to	serious	pregnancy	complications,	such	as	
preterm	 birth	 and	 even	 death	 (5).	 GDM	 raises	 the	 likelihood	 of	 adverse	 neonatal	
outcomes,	including	macrosomia,	babies	who	are	large	for	gestational	age	(LGA),	and	
low	Apgar	scores	(6).	Pregnant	women	who	have	gestational	diabetes	mellitus	(GDM)	
are	also	more	likely	to	develop	type	2	diabetes	and	cardiovascular	disease	after	birth	
(7).	 Genetic	 factors,	 such	 as	 single	 nucleotide	 variations,	 can	 increase	 the	 risk	 of	
gestational	diabetes	mellitus	by	affecting	insulin	signaling	pathways,	cell	transport,	and	
enzyme	function	(8).	In	addition,	being	overweight	or	obese	before	pregnancy	can	also	
increase	the	risk	of	developing	GDM	(9).	Typically,	an	oral	glucose	tolerance	test	(OGTT)	
conducted	between	weeks	24	and	28	of	pregnancy	 is	used	to	 identify	GDM.	Because	
physiological	insulin	resistance	in	pregnancy	is	typically	well-developed	at	this	point,	
this	time	frame	was	selected	(10).	Early	detection	of	GDM	is	very	important,	as	it	can	
help	 prevent	 or	 reduce	 the	 likelihood	 of	 poor	 pregnancy	 outcomes	 (11).	 However,	
conventional	prediction	models	that	rely	on	maternal	characteristics	at	the	beginning	
of	pregnancy	often	have	limited	accuracy,	as	they	are	unable	to	account	for	dynamic	
changes	 in	 health	 parameters	 that	 occur	 as	 pregnancy	 progresses	 (12).	 Therefore,	
Machine	learning	techniques	offer	a	more	precise	and	reliable	solution	for	early	GDM	
prediction	 compared	 to	 traditional	 screening	 methods,	 especially	 in	 diverse	
populations	with	significant	variability	in	maternal	health	conditions	(13).	

Machine	Learning	 is	a	method	 in	which	computers	utilize	available	data	 to	 learn	
independently	 and	 optimize	 their	 performance	 without	 specific	 direct	 instructions	
(14).	Machine	learning	models	have	demonstrated	their	ability	to	predict	and	manage	
chronic	 diseases	 such	 as	 diabetes,	 heart	 disease	 and	 cancer.	 By	 utilizing	 in-depth	
patient	data,	these	models	can	identify	potential	disease	risks	and	provide	support	for	
faster	 intervention,	 allowing	 the	management	 of	 complex	medical	 conditions	before	
they	develop	further	(15).	Several	previous	studies	have	explored	the	use	of	machine	
learning	 algorithms	 in	 GDM	 risk	 classification.	 For	 example,	 (16)	 developed	
GDMPredictor,	 a	 predictive	 tool	 that	 attempts	 to	 calculate	 the	 risk	 of	 gestational	
diabetes	 (GDM)	 based	 on	 clinical	 and	 biochemical	markers,	 using	machine	 learning	
techniques.	 This	 study	 used	 various	 machine	 learning	 algorithms,	 such	 as	 Random	
Forest,	 Support	 Vector	 Machine	 (SVM),	 Gaussian	 Naive	 Bayes	 (NB),	 K-nearest	
Neighbors	 (k-NN),	 AdaBoost,	 Gradient	 Boosting,	 Bernoulli	 Naive	 Bayes	 (NB),	 and	
Decision	Tree.	Of	all	the	algorithms	used,	Random	Forest	showed	the	highest	accuracy	
of	96%,	making	it	a	highly	effective	tool	in	predicting	GDM	risk.	This	algorithm	shows	
great	potential	in	helping	early	identification	of	high-risk	patients	and	providing	more	
precise	and	personalized	 treatment	 recommendations.	 	On	 the	other	hand,	 research	
conducted	by	(17)	aimed	 to	 identify	 factors	 influencing	 the	onset	of	 type	2	diabetes	
(T2DM)	 in	 women	 who	 had	 previously	 experienced	 gestational	 diabetes	 (GDM)	 by	
applying	machine	 learning	methods.	The	study	utilized	several	algorithms,	 including	
Decision	Tree,	which	achieved	an	accuracy	of	82.7%,	and	Naive	Bayes,	which	produced	
a	classification	accuracy	of	81.3%.	Another	study	by	(18)	aims	to	develop	a	prediction	
model	that	can	recognize	gestational	diabetes	in	pregnant	women	using	a	combination	
of	machine	learning	algorithms.	The	algorithms	used	include	Decision	Tree	with	95%	
accuracy,	Random	Forest	has	an	accuracy	of	94%,	Support	Vector	Machine	(SVM)	has	
an	accuracy	of	77%,	K-nearest	neighbors	(KNN)	with	93%	accuracy,	Logistic	Regression	
accuracy	of	74%,	and	Naive	Bayes	has	an	accuracy	of	73%.	This	research	shows	that	the	
combination	of	K-means	clustering	with	classification	algorithms	results	in	a	significant	
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increase	 in	 accuracy,	 especially	 in	 the	 Desicion	 Tree,	 Random	 Forest	 and	 KNN	
algorithms.		

Previous	research	has	shown	that	machine	learning	techniques	like	Random	Forest,	
Naive	Bayes,	and	K-Nearest	Neighbors	(KNN)	offer	higher	accuracy	in	predicting	the	
likelihood	 of	 GDM	 compared	 to	 traditional	 methods	 such	 as	 the	 OGTT,	 which	 face	
challenges	 in	 accuracy	 and	 speed,	 particularly	when	 detecting	 GDM	 at	 early	 stages.	
Based	on	these	existing	gaps,	 the	hypothesis	of	this	study	is	that	the	Random	Forest	
algorithm	will	achieve	higher	accuracy	in	classifying	GDM	risk	compared	to	the	Naive	
Bayes	and	K-Nearest	Neighbors	(KNN)	algorithms	and	will	be	superior	to	traditional	
methods	such	as	OGTT.	This	is	because	Random	Forest	can	handle	the	complexity	of	
medical	data	while	providing	faster	and	more	accurate	results.	In	order	to	identify	the	
best	 machine	 learning	 algorithm	 for	 early	 DMG	 illness	 classification,	 this	 study	
compares	 three	 different	 algorithms,	 Random	 Forest,	 Naive	 Bayes,	 and	 K-Nearest	
Neighbors	 (KNN).	 This	 research	 also	 applies	 SMOTE	 to	 address	data	 imbalance	 and	
evaluates	 model	 performance	 with	 metrics	 such	 as	 accuracy,	 AUC,	 sensitivity,	 and	
specificity.	This	comprehensive	comparison	is	critical,	as	identifying	the	most	effective	
algorithm	 can	 significantly	 impact	 early	 detection	 and	 timely	 intervention	 for	 GDM,	
ultimately	leading	to	better	maternal	and	infant	health	outcomes	by	enabling	targeted	
risk	management	during	pregnancy.	

2 Method 

 

Fig. 1. Research Stages 

Figure 1 (19) are the stages of research used in the classification of GDM risk using machine 
learning. With an explanation of the steps as follows: 
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2.1  Dataset 

Data	 is	 a	 set	 of	 information	 obtained	 from	 activities	 in	 the	 real	 world.	 After	 being	
converted	into	a	format	that	can	be	understood	by	machines,	the	data	is	stored	in	files	
commonly	known	as	datasets	(20).	Datasets	have	become	essential	in	the	advancement	
of	 machine	 learning	 research.	 They	 form	 the	 basis	 for	 the	models	 we	 develop	 and	
deploy,	 while	 also	 acting	 as	 the	 main	 resource	 for	 testing	 and	 evaluating	 model	
performance	 (21).	 The	 dataset	 used	 in	 this	 study	 is	 a	 dataset	 obtained	 from	 the	
Kurdistan	region	laboratory,	which	collected	information	from	pregnant	women	with	
and	without	 diabetes.	 The	 dataset	 consists	 of	 1012	 data	 and	 has	 several	 important	
variables	 that	 can	 affect	 the	 risk	 of	 gestational	 diabetes,	 such	 as	 age,	 pregnancy	no,	
weight,	height,	BMI,	heredity	and	prediction.	However,	there	are	some	limitations	and	
potential	biases	to	consider	such	as	the	data	set	only	comes	from	1	region	so	it	may	not	
fully	represent	populations	in	other	regions	that	have	different	genetic	backgrounds,	
environments,	or	lifestyles.	This	may	limit	the	ability	of	the	model	to	work	accurately	
for	people	outside	of	this	region.	Another	limitation	is	the	small	number	of	datasets	and	
variables.	Future	research	could	use	data	from	different	regions	with	more	data	and	
variables.	

2.2  Data Preprocessing 

Data	preprocessing	plays	a	crucial	role	in	ensuring	the	quality	of	the	analysis,	as	using	
unprocessed	 raw	 data	 typically	 fails	 to	 deliver	 accurate	 results	 and	 may	 lead	 to	
incorrect	conclusions	(22).	This	process	includes	handling	missing	data,	duplicate	data,	
outliners,	data	exploration,	data	normalization,	data	balancing,	feature	selection,	and	
data	splitting.	One	of	the	key	steps	in	this	study	is	addressing	class	 imbalance	in	the	
dataset,	where	the	number	of	high-risk	GDM	cases	 is	 lower	than	non-risk	cases.	The	
Synthetic	 Minority	 Over-sampling	 Technique	 (SMOTE)	 is	 used	 to	 control	 this	
imbalance.	 By	 creating	 synthetic	 instances	 for	 the	 minority	 class,	 SMOTE	 handles	
unbalanced	data,	preventing	overfitting	and	guaranteeing	that	the	model	is	not	skewed	
toward	the	majority	class	(23).	In	this	research,	data	division	is	carried	out	in	a	ratio	of	
80:20,	where	80%	of	the	dataset	is	for	testing	data	and	20%	of	the	dataset	is	for	training	
data.	Each	step	of	data	preprocessing	is	done	to	ensure	that	the	data	used	in	the	machine	
learning	model	is	of	high	quality	and	ready	to	be	used	in	the	predictive	analysis	process.	
Thus,	data	preprocessing	helps	optimize	the	accuracy	and	generalization	of	the	model	
to	new	data.	

2.3  Machine Learning Models Building	

Once	 data	 preprocessing	 is	 complete,	 the	 next	 step	 is	 to	 build	 and	 train	 machine	
learning	 models	 that	 aim	 to	 predict	 the	 risk	 of	 gestational	 diabetes	 mellitus.	 This	
process	 involves	 selecting	 algorithms,	 training	 models,	 and	 evaluating	 their	
performance.	 In	 this	 study,	 various	 machine	 learning	 algorithms	 are	 employed,	
including	 Random	 Forest,	 Naive	 Bayes,	 and	 KNN.	 Random	 Forest	 is	 a	 predictive	
algorithm	that	works	by	constructing	multiple	decision	trees	using	random	subsets	of	
the	 data,	 with	 the	 final	 prediction	 determined	 by	 the	 majority	 vote	 from	 all	 the	
generated	trees	(24).	Random	forest	was	chosen	because	this	algorithm	is	not	affected	
by	statistical	assumptions	and	preprocessing	loads,	and	is	able	to	process	large	datasets	
with	 many	 variables	 (25).	 Naive	 Bayes	 is	 a	 straightforward	 probabilistic	 approach	



International Conference on Health and Biological Science  
ICHBS, Page 280-295, December 2024  

 
284 

grounded	in	Bayes'	Theorem,	which	assumes	that	all	attributes	are	independent	of	one	
another	 (26).	 Naive	 Bayes	 was	 chosen	 because	 this	 algorithm	 is	 very	 effective,	
especially	in	managing	data	with	high	dimensions	and	unbound	attributes,	making	this	
algorithm	the	right	choice	for	large	datasets	(27).	KNN	is	a	non-parametric	technique	
that	uses	the	closest	neighbor	class	to	categorize	a	fresh	sample	(28).	This	algorithm	
was	chosen	 for	 its	effective	ability	 to	handle	 large	datasets	as	well	as	 its	 robustness	
against	data	containing	noise	(29).	By	applying	these	three	algorithms,	this	research	
aims	to	compare	the	performance	of	each	method	in	predicting	the	risk	of	gestational	
diabetes	mellitus.	

2.4  Building Evaluation of Performance Metricts 

Evaluation	 has	 an	 important	 role	 in	 machine	 learning	 (ML).	 Evaluation	 is	 a	 tool	
designed	to	support	best	practices	in	measurement,	metrics,	and	comparison	of	data	
and	models.	The	goal	is	to	ensure	the	evaluation	is	replicable,	centralize	and	document	
the	process,	and	extend	the	evaluation	to	cover	more	aspects	of	model	performance	
(30).	The	research	evaluation	was	conducted	using	Receiver	Operating	Characteristic	
(ROC)	 curves,	 Area	 Under	 the	 Curve	 (AUC),	 diagnostic	 accuracy,	 sensitivity,	 and	
specificity.	ROC	curves	are	utilized	to	assess	 the	overall	effectiveness	of	a	diagnostic	
test,	 compare	 the	 performance	 of	multiple	 tests,	 and	 identify	 the	 optimal	 threshold	
value	 for	determining	whether	an	 individual	has	a	particular	disease	 (31).	The	area	
beneath	the	ROC	curve,	known	as	AUC,	is	a	measure	that	evaluates	how	well	the	model	
distinguishes	between	the	positive	and	negative	classes	(32).	Sensitivity	gauges	how	
effectively	the	model	detects	actual	positive	cases,	while	specificity	assesses	its	capacity	
to	correctly	identify	true	negative	cases	(33).	Combining	these	evaluation	metrics	can	
ensure	 the	 reliability,	 accuracy,	 and	 suitability	 of	 the	model	 to	 determine	 the	most	
effective	algorithm	in	GDM	disease	classification.	

3. Result and Discussion 
3.1. Gestational Diabetes Mellitus Dataset 
The	 study	 was	 conducted	 using	 a	 dataset	 obtained	 from	 the	 Kurdistan	 region	
laboratory,	 which	 collected	 information	 from	 pregnant	 women	 with	 and	 without	
diabetes.	It	can	be	seen	in	Table	1.	Contains	examples	of	Gestational	Diabetes	Mellitus	
data	used	in	the	study	displayed	in	the	first	5	rows	and	the	last	5	rows,	where	the	data	
amounted	to	1012	data	and	had	7	columns	with	variables	such	as	age,	pregnancy	no,	
weight,	 height,	 BMI,	 heredity	 and	 prediction.	 The	 data	 will	 be	 an	 overview	 of	 the	
characteristics	of	pregnant	women	who	are	at	risk	and	not	at	risk	of	gestational	diabetes	
mellitus.	Each	variable	has	an	important	role	in	building	an	accurate	prediction	model.	

Table 1. Gestational Diabetes Mellitus Data Sampl 

No	 Age	 Pregnancy	No	 Weight	 Height	 BMI	 Heredity	 Prediction	
1	 17.00	 1.0	 48.0	 165.0	 17.6	 0	 0	
2	 17.00	 1.0	 49.0	 145.0	 23.3	 0	 0	
3	 17.00	 1.0	 50.0	 140.0	 25.5	 0	 0	
4	 17.00	 1.0	 50.0	 145.0	 23.8	 0	 0	
5	 17.00	 1.0	 49.0	 146.0	 23.0	 0	 0	
…	 …	 …	 …	 …	 …	 …	 …	

1008	 35.0	 3.0	 89.0	 159.0	 35.2	 1	 1	
1009	 41.0	 4.0	 87.0	 165.0	 32.0	 0	 0	
1010	 34.0	 2.0	 67.0	 160.0	 26.2	 1	 0	
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1011	 33.0	 3.0	 65.0	 167.0	 23.3	 0	 1	
1012	 28.0	 2.0	 68.0	 156.0	 27.9	 0	 0	

	
3.2. Data Preprocessing  

In	 the	 data	 preprocessing	 stage,	 several	 steps	 are	 taken	 to	 prepare	 the	 data	 before	
modeling.	These	steps	include	data	cleaning,	data	exploration,	normalization,	dataset	
balancing,	feature	selection,	and	data	division.	

3.2.1. Data Cleaning 

The	 first	step	 in	data	preprocessing	 is	 to	check	 for	missing	data,	duplicate	data,	and	
outliers.	If	any	of	these	issues	are	found,	data	deletion	or	replacement	(using	mean	or	
median	values)	 is	performed	 to	prevent	bias.	 In	 this	dataset,	 there	were	no	missing	
values,	but	duplicate	and	outlier	data	were	present.	Duplicate	data	was	identified	and	
removed	to	avoid	redundancy,	which	could	have	led	to	overrepresentation	of	certain	
samples,	affecting	the	model's	performance.	Outliers	were	also	detected	using	box	plots	
and	the	Interquartile	Range	(IQR)	method.	These	outliers	can	distort	statistical	analysis	
and	negatively	 impact	 the	model	by	skewing	relationships	between	variables.	While	
outliers	may	reflect	valid	extreme	values	or	rare	cases,	they	can	also	be	the	result	of	
data	entry	errors.	To	ensure	a	clean	and	relevant	dataset,	both	duplicate	and	outlier	
data	were	 removed,	 reducing	 the	 dataset	 size	 from	1012	 to	 892	 samples.	 This	 step	
aimed	to	improve	the	accuracy	and	performance	of	the	model	in	predicting	the	risk	of	
gestational	diabetes.	

3.2.2.  Data Exploration 

The	next	process	is	data	exploration,	which	is	done	to	gain	a	deeper	understanding	of	
the	data's	structure	and	properties	before	using	it	to	develop	machine	learning	models.	
Data	exploration	aims	to	find	patterns,	trends,	anomalies,	and	relationships	between	
features	in	the	dataset.	
	 Based	 on	 Fig.	 2.	 the	 distribution	 of	 the	 data	 shows	 clear	 characteristics	 of	 the	
pregnant	 women	 in	 this	 dataset.	 Most	 of	 the	 mothers	 are	 within	 the	 common	
reproductive	age	range	of	20	to	35	years	old,	with	only	a	few	being	under	20	or	over	40	
years	old.	The	number	of	pregnancies	was	dominated	by	first	or	second	pregnancies,	
while	more	than	three	pregnancies	were	rare.	Maternal	weight	distribution	focused	on	
the	60	to	80	kg	range,	with	a	few	individuals	weighing	over	100	kg,	which	could	be	an	
indication	of	potential	obesity-related	health	risks.	In	contrast,	the	height	distribution	
showed	 that	most	mothers	were	between	155	 and	165	 cm	 tall,	which	 is	 a	 common	
height	range,	although	there	was	little	variation	outside	this	range.	Most	mothers	in	the	
dataset	have	a	BMI	in	the	normal	to	overweight	category,	with	the	distribution	peaking	
at	around	25	 to	30.	This	 suggests	 that	most	mothers	are	 in	normal	health,	although	
there	are	some	who	have	a	high	BMI	above	35,	which	falls	into	the	obese	category.	As	
for	the	distribution	of	heredity,	most	mothers	do	not	have	a	family	history	of	diabetes,	
with	only	a	small	percentage	having	such	a	history.	This	suggests	that	heredity	may	not	
be	the	main	cause	of	gestational	diabetes	risk	in	this	population,	and	other	factors	such	
as	BMI	and	age	likely	play	a	greater	role.	
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Fig.	1.	Distribution	of	Diabetes	Mellitus	Gestational	Data.	

	
Fig.	2.	Heatmap	of	Diabetes	Mellitus	Gestational	Data.	

Fig.	 3.	 is	 a	 heatmap	 of	 the	 GDM	 data	 showing	 the	 relationship	 between	 variables.	
Variables	with	correlation	values	close	to	one	indicate	a	very	strong	relationship,	while	
variables	with	correlation	values	close	to	zero	have	a	low	correlation.	Highly	correlated	
variables	are	marked	with	dark	colors	on	this	map.		

Based	 on	 the	 correlation	 analysis	 of	 the	 heatmap,	 there	 are	 several	 significant	
relationships	between	the	variables	in	the	dataset.	A	high	correlation	is	seen	between	
weight	and	BMI	with	a	correlation	value	of	0.85,	indicating	that	these	two	variables	are	
highly	 correlated.	 In	 addition,	 there	 is	 a	 fairly	 strong	 correlation	 between	 age	 and	
number	of	pregnancies	(0.69),	indicating	that	the	older	a	pregnant	woman	is,	the	more	
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pregnancies	she	tends	to	have.	For	a	moderate	correlation,	BMI	and	predicted	risk	had	
a	 correlation	 of	 0.43,	 indicating	 that	 the	 higher	 the	 BMI,	 the	 greater	 the	 risk	 of	
gestational	 diabetes.	 The	 dataset's	 BMI	 distribution	 revealed	 that	 the	 majority	 of	
pregnant	women	fell	into	the	normal	to	overweight	range,	with	a	small	percentage	of	
pregnant	women	having	a	BMI	exceeding	35,	which	is	regarded	as	obese.	Since	elevated	
insulin	 resistance	 is	 a	 primary	 contributing	 factor	 to	 the	 development	 of	 diabetes	
during	pregnancy,	a	higher	BMI	has	a	considerable	impact	on	the	risk	of	GDM.	Heredity,	
with	a	correlation	of	0.48,	also	affects	the	risk	of	GDM,	suggesting	that	genetic	factors	
have	 an	 important	 role	 in	 the	 increased	 risk	 of	 gestational	 diabetes	 mellitus.	 This	
correlation	reflects	that	a	family	history	of	diabetes	tends	to	increase	the	likelihood	of	
GDM,	as	genetic	 factors	can	affect	how	the	body	regulates	glucose	 levels	and	 insulin	
response.	In	addition,	body	weight	had	a	correlation	of	0.39,	which	suggests	that	body	
weight	plays	a	moderate	role	in	the	risk	of	GDM.	This	correlation	could	be	due	to	the	
fact	that	higher	body	weight	is	associated	with	metabolic	changes	and	increased	insulin	
resistance,	both	of	which	contribute	to	the	risk	of	diabetes	during	pregnancy.	Although	
the	 correlation	 is	 not	 as	 strong	 as	 heredity,	 weight	 remains	 an	 important	 factor	 to	
consider	 in	 GDM	 risk	 assessment.	 On	 the	 other	 hand,	 the	 height	 variable	 has	 low	
correlations	with	most	other	variables,	including	a	small	negative	correlation	with	BMI	
at	-0.32	and	a	very	low	correlation	with	risk	prediction	at	-0.065,	indicating	that	height	
does	not	play	a	significant	role	in	predicting	gestational	diabetes	risk	in	this	dataset.	

 

Fig.	3.	Box	Plot	Analysis	of	Destational	Diabetes	Data.	

Fig.	4.	shows	the	distribution	pattern	of	the	important	variables.	Pregnancy	No	tends	to	
be	on	the	lower	side,	indicating	that	most	pregnancy	values	are	in	the	minimum	range.	
Age	 shows	greater	variation	 in	 the	at-risk	group	with	 some	outliers	 in	both	groups.	
Weight	is	evenly	distributed	in	the	interquartile	range	with	some	outliers,	while	Height	
shows	a	similar	distribution	in	both	groups	without	many	significant	differences.	BMI	
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in	the	at-risk	group	was	higher	than	the	non-risk	group,	with	some	outliers	exceeding	
the	maximum	range,	suggesting	BMI	as	an	important	factor	in	gestational	diabetes	risk.	
Meanwhile,	 Heredity	 showed	 most	 of	 the	 non-risk	 group	 had	 no	 family	 history	 of	
diabetes,	 while	 the	 at-risk	 group	 had	 a	 wider	 distribution,	 indicating	 heredity	 as	 a	
significant	variable	in	predicting	risk.	

3.2.3. Normalization 

After	 the	 data	 exploration	 stage,	 the	 next	 step	 in	 data	 preprocessing	 is	 data	
normalization.	In	this	study,	normalization	was	carried	out	using	StandardScaler,	which	
standardizes	the	numeric	variables	to	have	a	mean	of	0	and	a	standard	deviation	of	1.	
This	 process	 is	 important	 because	 some	 machine	 learning	 algorithms,	 such	 as	 K-
Nearest	 Neighbors	 (KNN),	 are	 sensitive	 to	 the	 scale	 of	 the	 data,	 and	 normalization	
ensures	that	all	features	have	an	equal	impact	on	the	model.	The	normalized	features	
include	Age,	Pregnancy	No,	Weight,	Height,	and	BMI.	After	normalization,	each	feature	
in	the	dataset	has	the	same	scale	and	is	ready	for	the	next	process.	

3.2.4. Dataset Balancing 

Continued	 with	 dataset	 balancing	 to	 handle	 data	 imbalance	 in	 the	 target	 variable,	
namely	prediction.	The	proportion	of	pregnant	women	in	this	sample	who	are	at	risk	
for	gestational	diabetes	 is	unbalanced.	Since	the	model	tends	to	predict	the	majority	
class	more	accurately,	this	imbalance	may	have	an	impact	on	model	performance	if	left	
unchecked.	This	problem	was	solved	by	using	 the	SMOTE	(Synthetic	Minority	Over-
sampling	Technique)	approach,	which	creates	a	synthetic	sample	in	order	to	enhance	
the	 amount	 of	 data	 in	 the	minority	 class.	 By	 using	 SMOTE,	 the	 dataset's	 fraction	 of	
positive	and	negative	classes	is	more	evenly	distributed,	improving	the	model's	ability	
to	predict	both	classes.	
	 Before	SMOTE,	the	number	of	datasets	in	class	0	(not	at	risk	of	gestational	diabetes)	
was	 699	 data,	 while	 class	 1	 (at	 risk	 of	 gestational	 diabetes)	 was	 193	 data.	 This	
distribution	shows	 that	 the	 initial	dataset	has	class	 imbalance,	where	 the	amount	of	
data	in	class	0	is	much	more	than	class	1.	After	SMOTE,	the	number	of	datasets	in	class	
0	is	699	and	the	number	of	data	in	class	1	is	699.	This	shows	that	the	dataset	becomes	
balanced	with	the	same	amount	of	data	in	both	classes,	i.e.	699	data	in	class	0	and	699	
data	in	class	1.	This	will	help	the	machine	learning	model	to	work	better	in	predicting	
both	classes	without	bias	towards	the	majority	class,	which	will	ultimately	improve	the	
overall	performance	of	the	model.	

3.2.5. Feature Selection 

The	next	stage	is	feature	selection.	Through	the	feature	selection	process,	the	main	goal	
is	to	select	the	most	relevant	and	significant	features	in	predicting	the	risk	of	gestational	
diabetes	 in	 pregnant	women.	 By	 applying	 certain	 statistical	methods	 or	 algorithms,	
researchers	can	identify	and	eliminate	features	that	are	less	important	or	redundant,	so	
that	the	resulting	model	becomes	more	efficient	and	has	more	optimal	performance.	
Feature	selection	also	helps	in	reducing	the	number	of	dimensions	in	the	dataset,	which	
in	turn	can	speed	up	the	computational	process	and	reduce	the	risk	of	overfitting.	

3.2.6. Data Splitting 
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After	going	through	the	feature	selection	stage,	the	last	step	in	preprocessing	is	data	
splitting.	80%	of	the	data	is	allocated	for	training,	while	the	remaining	20%	is	reserved	
for	 testing.	 This	 split	 allows	 the	 model	 to	 be	 trained	 with	 the	 training	 set	 and	 its	
performance	assessed	using	the	testing	set.	With	an	80:20	distribution,	most	of	the	data	
is	utilized	to	train	the	model	in	recognizing	patterns,	while	the	test	set	is	employed	to	
evaluate	the	model’s	ability	to	predict	new,	unseen	data.	In	sharing	the	dataset,	1118	
samples	were	used	as	training	data,	with	a	balanced	distribution	between	classes	0	(not	
at	risk)	and	1	(at	risk),	with	559	samples	each.	Meanwhile,	the	testing	data	used	280	
samples	with	a	balanced	distribution	between	classes	0	and	1,	each	with	140	samples.	

3.3 Machine Learning Models Building 

	
Fig.	4.	Comparison	of	Accuracy,	Sensitivity,	and	Specificity	

Fig.	5.	presents	a	comparison	of	the	performance	of	three	machine	learning	algorithms,	
namely	 Random	 Forest,	 K-Nearest	 Neighbors	 (KNN),	 and	 Naive	 Bayes	 based	 on	
accuracy,	 sensitivity,	 and	 specificity.	 According	 to	 the	 diagram,	 Random	 Forest	
outperformed	 the	 other	 models	 in	 all	 metrics,	 achieving	 86.43%	 accuracy,	 89.29%	
sensitivity,	 and	 83.57%	 specificity.	 KNN	 also	 showed	 strong	 results,	 with	 83.93%	
accuracy,	 88.57%	 sensitivity,	 and	 79.29%	 specificity.	 In	 contrast,	 Naive	 Bayes	
performed	 the	 least	 well,	 with	 an	 accuracy	 of	 76.79%,	 sensitivity	 of	 78.57%,	 and	
specificity	of	75.00%.	These	results	indicate	that	Random	Forest	is	the	most	consistent	
and	reliable	model,	demonstrating	a	well-balanced	performance	across	all	evaluation	
metrics.	Its	ability	to	manage	intricate	and	non-linear	relationships	between	features	
by	averaging	multiple	decision	trees	enhances	its	classification	accuracy.	This	strength	
makes	Random	Forest	the	best	option	for	classifying	GDM	disease.	
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Fig.	5.	Receiver	Operating	Characteristic	Curve	

Fig.	 6.	 shows	 the	 Receiver	 Operating	 Characteristic	 (ROC)	 Curve	 of	 the	 three	
machine	learning	algorithms	used	in	the	study,	namely	Random	Forest,	Naive	Bayes,	
and	K-Nearest	Neighbors	 (KNN).	 The	ROC	 curve	 plots	 the	 relationship	 between	 the	
True	Positive	Rate	(TPR)	on	the	vertical	axis	and	the	False	Positive	Rate	(FPR)	on	the	
horizontal	axis,	allowing	for	an	evaluation	of	how	well	the	model	distinguishes	between	
positive	and	negative	classes.	A	model’s	performance	is	considered	better	when	its	ROC	
curve	is	closer	to	the	top-left	corner,	indicating	higher	predictive	accuracy.	

AUC	(Area	Under	the	Curve)	provides	a	numerical	score	for	this	ability.	AUC	values	
range	 from	0	 to	1,	values	closer	 to	1	mean	 the	model	performs	better	at	 identifying	
positive	 and	 negative	 cases	 correctly,	 while	 values	 closer	 to	 0.5	 indicate	 the	model	
performs	similarly	to	random	guessing.	In	simpler	terms,	a	higher	AUC	value	means	the	
model	makes	more	accurate	predictions	and	fewer	errors.	Based	on	the	ROC	curves,	
Random	Forest	achieves	the	highest	performance,	with	an	AUC	of	93.78%,	which	is	very	
close	to	1.	This	indicates	that	Random	Forest	is	highly	accurate	at	separating	positive	
and	 negative	 cases.	 Naive	 Bayes	 follows	 with	 an	 AUC	 of	 84.44%,	 showing	 good	
performance,	 though	 not	 as	 accurate	 as	Random	Forest.	 Lastly,	 KNN	has	 an	AUC	 of	
83.93%,	slightly	lower	than	Naive	Bayes,	indicating	it	performs	reasonably	well	but	is	
less	accurate	than	both	Random	Forest	and	Naive	Bayes.	

Table	1.	Model	Performance	Comparison	

Algoritma	 Accuracy	(%)	 AUC	(%)	 Sensitivity(%)	 Specificity(%)	
RF	 86.43	 93.78	 89.29	 83.57	
KNN	 83.93	 83.93	 88.57	 79.29	
NB	 76.79	 84.44	 78.57	 75.00	
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Abbreviations:	RF,	Random	Forest	;	KNN,	K-Nearest	Neighbor;	NB,	Naive	Bayes;	AUC,	Area	
Under	the	Curve.		

Tabel	2	shows	the	performance	of	Random	Forest,	KNN,	and	Naive	Bayes	is	evaluated	
based	 on	 key	metrics,	 including	 accuracy,	 AUC,	 sensitivity,	 and	 specificity.	 Random	
Forest	 has	 an	 accuracy	 of	 86.43%,	 AUC	 93.78%,	 sensitivity	 89.29%,	 and	 specificity	
83.57%,	indicating	that	this	model	is	very	good	at	predicting	gestational	diabetes	risk	
with	high	accuracy	and	good	ability	to	separate	positive	and	negative	classes.	KNN	also	
performed	well	with	83.93%	accuracy,	83.93%	AUC,	88.57%	sensitivity,	and	79.29%	
specificity.	Although	slightly	lower	than	Random	Forest,	KNN	remains	a	fairly	reliable	
algorithm	in	detecting	risk,	especially	with	a	sensitivity	that	is	almost	close	to	Random	
Forest.	On	the	other	hand,	Naive	Bayes	has	a	lower	performance	with	an	accuracy	of	
76.79%,	AUC	of	84.44%,	sensitivity	of	78.57%,	and	specificity	of	75.00%,	indicating	that	
this	algorithm	is	less	optimal	in	predicting	gestational	diabetes	risk	than	RF	and	KNN.	
Although	its	AUC	is	quite	good,	its	lower	sensitivity	and	specificity	indicate	that	Naive	
Bayes	more	often	makes	mistakes	in	predicting	the	risk	and	non-risk	classes.	Overall,	
Random	Forest	emerged	as	 the	best	performing	model,	 followed	by	KNN,	and	Naive	
Bayes	showing	 the	 lowest	performance	among	the	 three	algorithms.	This	 is	because	
Random	 Forest	 has	 resilience	 against	 overfitting	 and	 its	 ability	 to	 capture	 complex	
patterns	 in	 the	 data	 due	 to	 the	 ensemble	 of	 decision	 trees.	 This	 robustness	makes	
Random	 Forest	 very	 effective	 for	 classification	 problems	 that	 involve	 complex	
relationships	between	features,	such	as	in	gestational	diabetes	prediction.	

3.4. Evaluation  

Based	on	the	results	of	modeling	three	models	used	to	predict	the	risk	of	gestational	
diabetes	in	pregnant	women,	the	evaluation	shows	that	Random	Forest	(RF)	has	the	
best	performance	with	the	highest	accuracy,	which	is	86.43%,	AUC	93.78%,	sensitivity	
89.29%,	and	specificity	83.57%.	These	results	are	consistent	with	previous	research	by	
[16],	who	used	a	machine	 learning	approach	in	the	development	of	GDMPredictor,	a	
gestational	diabetes	risk	prediction	tool	based	on	clinical	and	biochemical	parameters.	
In	 that	 study,	 Random	 Forest	 also	 showed	 the	 highest	 accuracy	 among	 other	
algorithms,	making	it	one	of	the	most	effective	algorithms	in	predicting	GDM	risk.	

The	 KNN	 algorithm	 had	 an	 accuracy	 of	 83.93%,	 AUC	 of	 83.93%,	 sensitivity	 of	
88.57%,	and	specificity	of	79.29%.	These	results	show	that	KNN	is	one	of	the	effective	
algorithms	in	classification	tasks,	especially	in	data	related	to	diabetes	problems.	This	
is	 in	 line	with	 research	 [18],	 where	 KNN	 also	 showed	 strong	 performance	with	 an	
accuracy	of	93%.	Although	there	are	differences	in	accuracy	results	between	the	table	
and	previous	research,	 these	results	validate	 that	KNN	 is	a	 reliable	and	widely	used	
algorithm	 in	 prediction	 modeling,	 including	 in	 the	 case	 of	 gestational	 diabetes	
prediction.	

The	Naive	Bayes	(NB)	algorithm	recorded	an	accuracy	of	76.79%,	AUC	of	84.44%,	
sensitivity	of	78.57%,	and	specificity	of	75%.	These	results	show	that	NB	is	one	of	the	
effective	 algorithms	 in	 classification	which	 is	 supported	by	 research	 [17]	where	 the	
accuracy	of	NB	was	81.3%,	higher	than	the	results	in	the	table.	This	difference	may	be	
due	to	the	different	characteristics	of	the	data	used	in	the	two	studies,	or	due	to	different	
data	processing	methods.	Although	NB	is	usually	not	as	good	as	other	algorithms	such	
as	 Random	 Forest	 or	 KNN	 in	 some	 classification	 cases,	 the	 results	 from	 this	 table	
validate	 that	 NB	 is	 still	 effective	 and	 suitable	 for	 classification	 tasks,	 especially	 in	
medical	prediction	problems	such	as	diabetes	prediction.	
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Based	on	 the	 three	algorithms	 that	have	been	compared,	namely	Random	Forest	
(RF),	 K-Nearest	 Neighbor	 (KNN),	 and	 Naive	 Bayes	 (NB),	 all	 three	 show	 that	 each	
algorithm	has	its	own	effectiveness	in	predicting	the	risk	of	gestational	diabetes.	These	
models,	especially	Random	Forest,	are	highly	relevant	in	a	clinical	context	as	they	can	
help	obstetricians	predict	the	risk	of	gestational	diabetes	early	on,	allowing	for	timely	
interventions	and	 treatments	 that	are	better	suited	 to	 the	patient's	needs.	However,	
these	 findings	 are	 based	 on	 a	 data	 set	 limited	 to	 one	 region,	which	may	 limit	 their	
applicability	 to	 populations	with	 different	 characteristics	 or	 healthcare	 systems.	 To	
improve	generalizability,	future	studies	should	use	more	diverse	data	and	explore	more	
advanced	machine	 learning	 techniques,	 such	 as	 deep	 learning,	which	 can	 recognize	
more	complex	patterns.	In	addition,	the	addition	of	other	factors	such	as	genetic	data	
or	lifestyle	information	may	improve	the	accuracy	of	the	model.	Ethical	considerations,	
such	as	the	protection	of	patient	data	privacy	and	the	importance	of	human	oversight	
of	AI-generated	predictions,	are	also	crucial	to	ensure	safe	and	responsible	use	of	these	
models	in	clinical	practice.	

Conclusion 

This	study	compared	three	algorithms,	namely	Random	Forest,	K-Nearest	Neighbors	
(KNN),	and	Naive	Bayes	in	gestational	diabetes	mellitus	(GDM)	risk	classification	and	
found	that	Random	Forest	outperformed	the	other	algorithms	with	the	highest	accuracy	
of	86.43%,	making	it	the	most	reliable	model	for	GDM	prediction.	KNN	also	performed	
well	with	83.93%	accuracy,	while	Naive	Bayes,	with	76.79%	accuracy,	remained	usable	
but	 less	 than	 optimal.	 These	 findings	 highlight	 the	 potential	 of	 machine	 learning,	
specifically	 Random	 Forest,	 in	 improving	 early	 detection	 of	 GDM,	 enabling	 timely	
interventions	 that	 can	 improve	 maternal	 and	 fetal	 health	 outcomes.	 Healthcare	
providers	 can	 use	 these	 models	 as	 decision	 support	 tools	 to	 assess	 risk	 early	 in	
pregnancy,	leading	to	better	management	through	lifestyle	modifications	or	increased	
monitoring.	Although	Random	Forest	offers	the	best	accuracy,	KNN	and	NB	still	provide	
valuable	 alternatives	 depending	 on	 the	 context	 or	 data	 set.	 Integrating	 machine	
learning	into	clinical	practice	can	significantly	improve	the	accuracy	and	efficiency	of	
GDM	risk	assessment	and	drive	better	outcomes	for	patients.	Going	forward,	healthcare	
systems	can	prioritize	the	adoption	of	these	Machine	Learning	technologies	to	ensure	
timely	diagnosis	and	intervention	thereby	improving	health	for	mothers	and	children.	
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